Tshwane University of Technology

Bachelor of Engineering Technology Honours in Mechanical Engineering

Physical Planning and Construction - Physical Planning Design and Management

Purpose and Rationale

Purpose:

The Bachelor of Engineering Technology Honours in Mechanical Engineering is a postgraduate qualification designed to prepare learners for industry and research. This qualification is typically pursued after completing a Bachelor's Degree, Advanced Diploma, or a relevant NQF Level 7 qualification. The aim of this program is to deepen the student's expertise in a specific discipline, enhance their research capabilities, and address complex engineering problems. It requires a high level of theoretical engagement and intellectual independence.

The key purposes of this qualification include:

  • Preparation for careers in engineering and related fields
  • Development of technological proficiency
  • Contribution to the economy and national development
  • Entry to an NQF Level 9 Master's qualification in Mechanical Engineering

The program focuses on studies in Thermal Energy, Physical Asset Management, and Materials and Manufacturing. The modules are designed to align with the Graduate Attributes specified in the ECSA qualification standard (E-09-PT) for a Bachelor of Engineering Technology Honours.

Rationale:

The Bachelor of Engineering Technology Honours in Mechanical Engineering is an advanced specialized qualification that primarly aims to prepare learners for research-based postgraduate studies. This qualification is crucial in addressing the increasing demand for skilled Mechanical Engineers due to population growth and the associated need for mechanical infrastructure resources.

South Africa's current scenario highlights a shortage of engineering professionals in various sectors, particularly in mechanical engineering. The qualification is endorsed by the Engineering Council of South Africa (ECSA) and meets the requirements specified in the ECSA qualification standard for a Bachelor of Engineering Technology Honours at NQF Level 8.

While completion of this qualification does not lead to professional registration with ECSA, it can supplement other qualifications to meet the educational criteria for registration as a candidate engineer. Successful graduates may also gain entry to a Master's qualification in the field of Mechanical Engineering.

Outcomes

  1. Identify, formulate, analyse and solve complex Mechanical Engineering problems creatively and innovatively.
  2. Demonstrate competence to apply knowledge of mathematics, natural science and engineering sciences to the conceptualisation of engineering models and to solve complex Mechanical engineering problems.
  3. Demonstrate competence to perform creative, procedural and non-procedural design and synthesis of components, systems, engineering works, products or processes of a complex nature.
  4. Demonstrate competence to conduct investigations of complex Mechanical engineering problems including engagement with the research literature and use of research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.
  5. Demonstrate competence to use appropriate techniques, resources, and modern engineering tools, including information technology, prediction and modelling, for the solution of complex Mechanical engineering problems, with an understanding of the limitations, restrictions, premises, assumptions and constraints.
  6. Demonstrate competence to communicate effectively, both orally and in writing, with engineering audiences and the community at large.
  7. Demonstrate knowledge and understanding of the impact of engineering activities society, economy, industrial and physical environment.
  8. Display knowledge and understanding of engineering management principles.
  9. Demonstrate competence to engage in independent and life-long learning through well-developed learning skills.
  10. Comprehend and apply ethical principles and commit to professional ethics, responsibilities and norms of engineering practice.

Assessment Criteria

Associated Assessment Criteria for Exit Level Outcome 1:

  • Analyse and define the problem and identify the criteria for an acceptable solution.
  • Identify relevant information and engineering knowledge and skills for solving the problem.
  • Generate and formulate possible approaches that would lead to a workable solution for the problem.
  • Model and analyse possible solutions.
  • Evaluate possible solutions and select the best solution.
  • Formulate the solution and present it in an appropriate form.

Associated Assessment Criteria for Exit Level Outcome 2:

  • Apply an appropriate mix of knowledge of Mathematics, Numerical Analysis, Statistics, Natural Science and Engineering Science at a fundamental level and in a specialist area to bring solutions to complex engineering problems.
  • Use theories, principles and laws.
  • Perform formal analysis and modelling on engineering materials, components, systems or processes.
  • Communicate concepts, ideas and theories.
  • Perform reasoning about and conceptualising engineering materials, components, systems or processes.
  • Handle uncertainty and risk.
  • Perform work within the boundaries of the practice area.

Associated Assessment Criteria for Exit Level Outcome 3:

  • Formulate the design problem is formulated to satisfy user needs, applicable standards, codes of practice and legislation.
  • Plan and manage the design process is planned and managed to focus on important issues and recognises and deals with constraints.
  • Acquire and evaluate knowledge, information and resources are acquired and evaluated to apply appropriate principles and design tools to provide a workable solution.
  • Perform design tasks are performed including analysis, quantitative modelling and optimisation of the product, system or process subject to the relevant premises, assumptions, constraints and restrictions.
  • Evaluate alternatives are evaluated for implementation and a preferred solution is selected based on techno-economic analysis and judgement.
  • Assess the selected design is assessed in terms of social, economic, legal, health, safety, and environmental impact and benefits.
  • Communicate the design logic and relevant information is communicated in a technical report.

Associated Assessment Criteria for Exit Level Outcome 4:

  • Plan and conduct investigations and experiments within an appropriate discipline.
  • Search available literature and evaluate material for suitability to the investigation.
  • Perform analysis as necessary to the investigation.
  • Select and use equipment or software appropriately in the investigations.
  • Analyse, interpret and derive information from available data.
  • Conclude an analysis of all available evidence.
  • Record the purpose, process and outcomes of the investigation in a technical report or research project report.

Associated Assessment Criteria for Exit Level Outcome 5:

  • Assess the method, skill or tool for applicability and limitations against the required result.
  • Apply the method, skill or tool correctly to achieve the required result.
  • Test and assess results produced by the method, skill or tool against required results.
  • Create, select and use computer applications as required by the discipline.

Associated Assessment Criteria for Exit Level Outcome 6:

  • Ensure that the structure, style and language of written and oral communication are appropriate for the communication and the target audience.
  • Use appropriate graphics to effectively enhance the meaning of the text.
  • Use visual materials to enhance oral communications.
  • Use accepted methods for providing information to others involved in the engineering activity.
  • Deliver oral communication fluently with the intended meaning being apparent.

Associated Assessment Criteria for Exit Level Outcome 7:

  • Explain the impact of technology in terms of the benefits and limitations on society.
  • Analyse the engineering activity in terms of the impact on public and occupational health and safety.
  • Analyse the engineering activity in terms of the impact on the physical environment.
  • Take personal, social, economic, cultural values and requirements into consideration for those who are affected by the engineering activity.

Associated Assessment Criteria for Exit Level Outcome 8:

  • Explain the principles of planning, organising, leading and controlling.
  • Carry out individual work effectively, strategically and on time.
  • Ensure that contributions to team activities, including at disciplinary boundaries, support the output of the team as a whole.
  • Demonstrate functioning as a team leader.
  • Organise and manage a design or research project.
  • Carry out effective communication in the context of individual or teamwork.

Associated Assessment Criteria for Exit Level Outcome 9:

  • Manage learning tasks autonomously and ethically, individually and in learning groups.
  • Reflect on learning undertaken and own learning requirements and determine strategies to suit personal learning style and preferences.
  • Sourced, organised and evaluated relevant information is.
  • Comprehend and apply the knowledge acquired outside of formal instruction.
  • Challenge assumptions and embrace new thinking.

Associated Assessment Criteria for Exit Level Outcome 10:

  • Describe the nature and complexity of ethical dilemmas.
  • Describe the ethical implications of decisions made.
  • Apply ethical reasoning to evaluate engineering solutions.
  • Maintain continued competence through keeping abreast of up-to-date tools and techniques available in the workplace.
  • Understand the system of continuing professional development and embrace it as an on-going process.
  • Accept responsibility for consequences stemming from own actions.
  • Make judgements in decision making during problem-solving and justify the design.
  • Limit decision making to the area of current competence.

Qualification Details

Type
Honours Degree
NQF Level
08
Min. Credits
120
SAQA Source
More Information

Education Cost Calculator

Tshwane University of Technology
Description
Tshwane University of Technology (TUT) is a higher education institution located in Pretoria, South Africa. It was established in 2004 through the merger of three separate institutions. TUT offers a wide range of undergraduate and postgraduate programs across various fields of study, including engineering, business, science, arts, and technology. The university is known for its focus on practical and career-oriented education, providing students with the necessary skills and knowledge to succeed in their chosen professions. TUT also has a strong emphasis on research and innovation, contributing to the development of new technologies and solutions. With a diverse student body and state-of-the-art facilities, Tshwane University of Technology is committed to providing quality education and making a positive impact on society.

This page includes information from the South African Qualifications Authority (SAQA) . Builtneat Pty Ltd trading as Study Start, has modified all or some of this information. SAQA has not approved, endorsed, or tested these modifications.